Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 1319-1329, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970603

RESUMO

This study aimed to investigate the biological effects and underlying mechanisms of the total ginsenosides from Panax ginseng stems and leaves on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in mice. Sixty male C57BL/6J mice were randomly divided into a control group, a model group, the total ginsenosides from P. ginseng stems and leaves normal administration group(61.65 mg·kg~(-1)), and low-, medium-, and high-dose total ginsenosides from P. ginseng stems and leaves groups(15.412 5, 30.825, and 61.65 mg·kg~(-1)). Mice were administered for seven continuous days before modeling. Twenty-four hours after modeling, mice were sacrificed to obtain lung tissues and calculate lung wet/dry ratio. The number of inflammatory cells in bronchoalveolar lavage fluid(BALF) was detected. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in BALF were detected. The mRNA expression levels of IL-1β, IL-6, and TNF-α, and the levels of myeloperoxidase(MPO), glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in lung tissues were determined. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. The gut microbiota was detected by 16S rRNA sequencing, and gas chromatography-mass spectrometry(GC-MS) was applied to detect the content of short-chain fatty acids(SCFAs) in se-rum. The results showed that the total ginsenosides from P. ginseng stems and leaves could reduce lung index, lung wet/dry ratio, and lung damage in LPS-induced ALI mice, decrease the number of inflammatory cells and levels of inflammatory factors in BALF, inhibit the mRNA expression levels of inflammatory factors and levels of MPO and MDA in lung tissues, and potentiate the activity of GSH-Px and SOD in lung tissues. Furthermore, they could also reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Lachnospiraceae and Muribaculaceae, decrease the relative abundance of Prevotellaceae, and enhance the content of SCFAs(acetic acid, propionic acid, and butyric acid) in serum. This study suggested that the total ginsenosides from P. ginseng stems and leaves could improve lung edema, inflammatory response, and oxidative stress in ALI mice by regulating gut microbiota and SCFAs metabolism.


Assuntos
Camundongos , Masculino , Animais , Ginsenosídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Panax/genética , Lipopolissacarídeos/efeitos adversos , Microbioma Gastrointestinal , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Lesão Pulmonar Aguda/genética , Pulmão/metabolismo , Superóxido Dismutase/metabolismo , Folhas de Planta/metabolismo , RNA Mensageiro
2.
China Journal of Chinese Materia Medica ; (24): 3156-3161, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981451

RESUMO

Baby Boom(BBM) gene is a key regulatory factor in embryonic development and regeneration, cell proliferation, callus growth, and differentiation promotion. Since the genetic transformation system of Panax quinquefolius is unstable with low efficiency and long period, this study attempted to transfer BBM gene of Zea mays to P. quinquefolius callus by gene gunship to investigate its effect on the callus growth and ginsenoside content, laying a foundation for establishing efficient genetic transformation system of P. quinquefolius. Four transgenic callus of P. quinquefolius with different transformation events were obtained by screening for glufosinate ammonium resistance and molecular identification by PCR. The growth state and growth rate of wild-type and transgenic callus were compared in the same growth period. The content of ginsenoside in transgenic callus was determined by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS). The results showed that transgenic callus growth rate was significantly higher than that of wild-type callus. In addition, the content of ginsenoside Rb_1, Rg_1, Ro, and Re was significantly higher than that in wild-type callus. The paper preliminarily proved the function of BBM gene in promoting growth rate and increasing ginsenoside content, which provided a scientific basis to establish a stable and efficient genetic transformation system for Panax plants in the future.


Assuntos
Feminino , Gravidez , Humanos , Ginsenosídeos , Panax/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proliferação de Células
3.
China Journal of Chinese Materia Medica ; (24): 3125-3131, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981447

RESUMO

Dao-di medicinal materials produced in a specific environment always present excellent appearance and high quality. Because of the unique appearance, Ginseng Radix et Rhizoma is regarded as a paradigm in the research on excellent appearance. This paper systematically summarized the research progress in the genetic and environmental factors influencing the formation of the excellent appearance of Ginseng Radix et Rhizoma, aiming to provide reference for the quality improvement of Ginseng Radix et Rhizoma and the scientific connotation of Dao-di Chinese medicinal materials. The Ginseng Radix et Rhizoma with high quality generally has a robust and long rhizome, a large angle between branch roots, and the simultaneous presence of a robust basal part of rhizome, adventitious roots, rhizome bark with circular wrinkles, and fibrous roots with pearl points. The cultivated and wild Ginseng Radix et Rhizoma have significant differences in the appearance and no significant difference in the population genetic diversity. The differences in the appearance are associated with cell wall modification, transcriptional regulation of genes involved in plant hormone transduction, DNA methylation, and miRNA regulation. The rhizosphere soil microorganisms including Fusarium and Alternaria, as well as the endophytes Trichoderma hamatum and Nectria haematococca, may be the key microorganisms affecting the growth and development of Panax ginseng. Cultivation mode, variety, and root exudates may be the main factors influencing the stability of rhizosphere microbial community. Ginsenosides may be involved in the formation of the excellent appearance. However, most of the available studies focus on the partial or single factors in the formation of Dao-di medicinal materials, ignoring the relationship within the complex ecosystems, which limits the research on the formation mechanism of Dao-di medicinal materials. In the future, the experimental models for the research involving genetic and environmental factors should be established and mutant materials should be developed to clarify the internal relationship between factors and provide scientific support for the research on Dao-di medicinal materials.


Assuntos
Alternaria , Microbiota , Panax/genética , Rizoma
4.
China Journal of Chinese Materia Medica ; (24): 2931-2939, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981425

RESUMO

The U6 promoter is an important element driving sgRNA transcription in the CRISPR/Cas9 system. Seven PqU6 promo-ter sequences were cloned from the gDNA of Panax quinquefolium, and the transcriptional activation ability of the seven promoters was studied. In this study, seven PqU6 promoter sequences with a length of about 1 300 bp were cloned from the adventitious roots of P. quinquefolium cultivated for 5 weeks. Bioinformatics tools were used to analyze the sequence characteristics of PqU6 promoters, and the fusion expression vectors of GUS gene driven by PqU6-P were constructed. Tobacco leaves were transformed by Agrobacterium tumefaciens-mediated method for activity detection. The seven PqU6 promoters were truncated from the 5'-end to reach 283, 287, 279, 289, 295, 289, and 283 bp, respectively. The vectors for detection of promoter activity were constructed with GUS as a reported gene and used to transform P. quinquefolium callus and tobacco leaves. The results showed that seven PqU6 promoter sequences(PqU6-1P to PqU6-7P) were cloned from the gDNA of P. quinquefolium, with the length ranged from 1 246 bp to 1 308 bp. Sequence comparison results showed that the seven PqU6 promoter sequences and the AtU6-P promoter all had USE and TATA boxes, which are essential elements affecting the transcriptional activity of the U6 promoter. The results of GUS staining and enzyme activity test showed that all the seven PqU6 promoters had transcriptional activity. The PqU6-7P with a length of 1 269 bp had the highest transcriptional activity, 1.31 times that of the positive control P-35S. When the seven PqU6 promoters were truncated from the 5'-end(PqU6-1PA to PqU6-7PA), their transcriptional activities were different in tobacco leaves and P. quinquefolium callus. The transcriptional activity of PqU6-7PA promoter(283 bp) was 1.59 times that of AtU6-P promoter(292 bp) when the recipient material was P. quinquefolium callus. The findings provide more ideal endogenous U6 promoters for CRISPR/Cas9 technology in ginseng and other medicinal plants.


Assuntos
Panax/genética , Regiões Promotoras Genéticas , Agrobacterium tumefaciens/genética , Biologia Computacional , Clonagem Molecular
5.
China Journal of Chinese Materia Medica ; (24): 2158-2164, 2022.
Artigo em Chinês | WPRIM | ID: wpr-928155

RESUMO

Illumina Xten was employed for shallow sequencing of Panax ginseng(ginseng) samples, MISA for screening of SSR loci, and Primer 3 for primer design. Polymorphic primers were screened from 180 primers. From the successfully amplified polymorphic primers, 15 primers which featured clear peak shape, good polymorphism, and ease of statistics were selected and used to evaluate the genetic diversity and germplasm resources of 36 ginseng accessions with different fruit colors from Jilin province. The results showed that red-fruit ginseng population had high genetic diversity with the average number of alleles(N_a) of 1.031 and haploid genetic diversity(h) of 0.172. The neighbor-joining cluster analysis demonstrated that the germplasms of red-fruit and yellow-fruit ginseng populations were obviously intermixed, and pick-fruit ginseng germplasms clustered into a single clade. The results of STRUCTURE analysis showed high proportion of single genotype in pick-fruit ginseng germplasm and abundant genotypes in red-fruit and yellow-fruit ginseng germplasms with obvious germplasm mixing. AMOVA revealed that genetic variation occurred mainly within populations(62.00%, P<0.001), and rarely among populations(39%, P<0.001), but homogenization was obvious among different populations. In summary, pink-fruit ginseng population may contain rare genotypes, which is the basis for breeding of high-quality high-yield, and multi-resistance varieties, genetic improvement of varieties, and sustainable development and utilization of ginseng germplasm resources.


Assuntos
Frutas/genética , Variação Genética , Repetições de Microssatélites , Panax/genética , Melhoramento Vegetal
6.
China Journal of Chinese Materia Medica ; (24): 651-658, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927947

RESUMO

Ginsenoside Rh_2 is a rare active ingredient in precious Chinese medicinal materials such as Ginseng Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Panacis Quinquefolii Radix. It has important pharmacological activities such as anti-cancer and improving human immunity. However, due to the extremely low content of ginsenoside Rh_2 in the source plants, the traditional way of obtaining it has limitations. This study intended to apply synthetic biological technology to develop a cell factory of Saccharomyces cerevisiae to produce Rh_2 by low-cost fermentation. First, we used the high protopanaxadiol(PPD)-yielding strain LPTA as the chassis strain, and inserted the Panax notoginseng enzyme gene Pn1-31, together with yeast UDP-glucose supply module genes[phosphoglucose mutase 1(PGM1), α-phosphoglucose mutase(PGM2), and uridine diphosphate glucose pyrophosphorylase(UGP1)], into the EGH1 locus of yeast chromosome. The engineered strain LPTA-RH2 produced 17.10 mg·g~(-1) ginsenoside Rh_2. This strain had low yield of Rh_2 while accumulated much precursor PPD, which severely restricted the application of this strain. In order to further improve the production of ginsenoside Rh_2, we strengthened the UDP glucose supply module and ginsenoside Rh_2 synthesis module by engineered strain LPTA-RH2-T. The shaking flask yield of ginsenoside Rh_2 was increased to 36.26 mg·g~(-1), which accounted for 3.63% of the dry weight of yeast cells. Compared with those of the original strain LPTA-RH2, the final production and the conversion efficiency of Rh_2 increased by 112.11% and 65.14%, respectively. This study provides an important basis for further obtaining the industrial-grade cell factory for the production of ginsenoside Rh_2.


Assuntos
Humanos , Fermentação , Ginsenosídeos , Panax/genética , Panax notoginseng , Saccharomyces cerevisiae/genética , Uridina Difosfato Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA